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Abstract

In a previous paper, Morel and Montry used a Galerkin-based diffusion analysis to define 
a particular weighted diamond angular discretization for Sn calculations in curvilinear 
geometries.  The weighting factors were chosen to ensure that the Galerkin diffusion 
approximation was preserved, which eliminated the discrete-ordinates flux dip.  It was 
also shown that the step and diamond angular differencing schemes, which both suffer 
from the flux dip, do not preserve the diffusion approximation in the Galerkin sense.  In 
this paper we re-derive the Morel and Montry weighted diamond scheme using a formal 
asymptotic diffusion-limit analysis.  The asymptotic analysis yields more information 
than the Galerkin analysis and demonstrates that the step and diamond schemes do in fact 
formally preserve the diffusion limit to leading order, while the Morel and Montry 
weighted diamond scheme preserves it to first order, which is required for full 
consistency in this limit.  Nonetheless, the fact that the step and diamond differencing 
schemes preserve the diffusion limit to leading order suggests that the flux dip should 
disappear as the diffusion limit is approached for these schemes.  Computational results 
are presented that confirm this conjecture.  We further conjecture that preserving the 
Galerkin diffusion approximation is equivalent to preserving the asymptotic diffusion 
limit to first order.
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1. Introduction

It is well known that the diffusion equation can be derived from the transport 

equation through a Galerkin approximation based upon an angular trial space that is 

linear in the direction cosines.1 Morel and Montry2 used a Galerkin-based diffusion 

analysis to define a particular weighted diamond angular discretization scheme for Sn

calculations in curvilinear geometries.  The Morel and Montry weighted diamond 

weighting factors were chosen to ensure that the diffusion approximation was preserved, 

and preservation of this approximation was found to eliminate the discrete-ordinates flux 

dip.  It was also shown that the step and diamond angular differencing schemes, which 

were known to suffer from the flux dip, do not preserve the Galerkin diffusion 

approximation.  In this paper we revisit the derivation of the weighted diamond scheme 

using a formal asymptotic diffusion-limit analysis3,4 rather than one based upon a 

Galerkin diffusion approximation. The asymptotic analysis yields more information than

the Galerkin analysis, and demonstrates that the step and diamond schemes do in fact 

formally preserve the diffusion limit to leading order, whereas the weighted diamond 

scheme preserves it to first order.  Full consistency in the diffusion limit requires first-

order asymptotic preservation because the diffusion approximation itself is correct to first 

order.  If a numerical method does not preserve the diffusion limit through first order we 

conclude that it is not as accurate as a method which does preserve the diffusion limit 

through first order; methods that preserve the diffusion limit through leading order only 

do not represent the physics as well as methods which preserve the diffusion limit 

through first order.  Nonetheless, the fact that the step and diamond differencing schemes 
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preserve the diffusion limit to leading order suggests that when these schemes are used, 

the flux dip should disappear as the diffusion limit is approached.  Computational results 

are presented that confirm this conjecture.  In this paper, when we refer to the accuracy of 

a method, we refer to the extent to which it preserves the diffusion limit, i.e., its 

asymptotic order of accuracy in that limit.  With this definition, a method that preserves 

the diffusion limit to first order is more accurate, or consistent with the analytic diffusion 

limit, than a scheme that only preserves it to leading order. Our discussion of the 

computational results reflects this definition.  While it might appear that the original 

Galerkin analysis is in contradiction to the asymptotic analysis, we believe that this is 

actually not the case.   Rather we conjecture that preservation of the Galerkin diffusion 

approximation is equivalent to preservation of the asymptotic diffusion limit to first order.

The remainder of this paper is organized as follows.  In Section 2, we discuss the 

Galerkin approach for defining preservation of the diffusion limit. In Section 3, we 

discuss the asymptotic approach.  In Section 4, we apply the asymptotic analysis to the Sn

equations in 1D spherical geometry with general weighted diamond differencing.  We 

show that while the diffusion limit is preserved to leading order independent of the 

auxiliary weighted diamond relationship, only the weighted diamond relationship of 

Morel and Montry preserves the asymptotic diffusion limit to first order.  In Section 5 we 

apply the asymptotic diffusion-limit analysis to the Sn equations with general weighted

diamond angular differencing in RZ geometry and show results analogous to those 

obtained in 1D spherical geometry.  In Section 6 we present computational results 

demonstrating that the flux dip does not appear with the weighted diamond scheme of 
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Morel and Montry in both 1D spherical and 2D cylindrical geometries.  We also present 

results in both 1D spherical geometry and 2D cylindrical geometry demonstrating that the 

diamond scheme satisfies the diffusion limit to leading order and that the flux dip 

disappears in this limit.  Finally in Sections 7 and 8 we argue that the Galerkin and 

asymptotic analyses are not contradictory, and suggest research for the future.

2. The Galerkin-Based Diffusion Analysis

Morel and Montry defined the following technique for determining if an Sn scheme

preserves the Galerkin diffusion approximation in 1-D spherical geometry.

1. Begin with the 1-D spherical-geometry Sn equations discretized only in angle.

2. Assume a discrete angular flux solution of the following linear form:

1 3 ,
4 4m r mJ  
 

  (1)

where m is the angular flux in direction m,  is the scalar flux, and Jr is the 

radial component of the current.

3. Numerically integrate the Sn equations over all directions to obtain the balance 

equation.  All standard Sn discretizations ensure that a balance equation is 

obtained.  This is the zeroth angular moment of the transport equation.

4. Multiply the Sn equations by m and then numerically integrate to obtain an 

equation for the current.  This is the first angular moment of the transport 

equation.
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5. If the equation for the current is equivalent to Fick’s law, then the Sn equations are 

said to preserve the Galerkin diffusion approximation because the current can be 

eliminated from the balance equation to obtain the diffusion equation.

This technique is useful, but it only involves the end-state of the diffusion limit.  It 

assumes that the angular flux has a linear dependence, but it does not define a physical 

process that drives the transport solution to that state. This approach gives no information 

about when or why the angular flux should assume a linear dependence.  We simply 

know that if we assume a linear dependence, the analytic transport solution will satisfy 

the diffusion equation. In the next section we show that an asymptotic diffusion limit 

analysis is much more useful than the Galerkin diffusion analysis.  The asymptotic 

approach defines a true limiting process in which the transport solution is driven to a 

diffusive dependence. 

3.  The Asymptotic Diffusion Limit Analysis

We can show that the transport equation limits to a diffusion equation by 

performing an asymptotic analysis on the properly scaled transport equation.  In this 

analysis we first scale the physical parameters in the transport equation by a small 

parameter,  such that the problem becomes optically thick and diffusive in the limit as

   .  As a result, 
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We then expand the angular flux solution in terms of a power series of , 

       0 1 22 ...,m m m mr       (3)

and substitute this expression into the transport equation.  This results in a hierarchy of 

equations with each equation corresponding to the coefficients of a given power of .  We 

solve these equations to determine how our scaled equation behaves in the diffusion limit.  

Larsen and Keller3 have shown that when this analysis is performed on the analytic 

transport equation with isotropic scattering and an isotropic distributed source, the 

leading-order angular flux is isotropic:

(0) (0)1 ,
4

 


 (4)

and the leading-order scalar flux satisfies the following diffusion equation in the interior 

of a thick, diffusive problem

(0) (0) .aD Q     
 
� (5)

Furthermore, the first-order scalar flux similarly satisfies a diffusion equation:

(1) (1) 0 .aD      
 
� (6)

Multiplying Eq.(6) by and adding it to Eq.(5), we see that the scalar flux through first 

order satisfies the same diffusion equation as the leading-order scalar flux:

(0) (1) (0) (1)( ) ( ) .aD Q         
 
� (7)

Further analysis shows that the diffusion approximation has a second-order asymptotic 

error in the diffusion limit:
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2( ) .aD Q O       
 
� (8)

Larsen, Morel, and Miller4 have shown that if a discretized form of the transport 

equation limits to an accurate discretized diffusion equation for the leading-order scalar 

flux under the same scaling, the discretization will produce accurate results in highly 

diffusive problems.  However, to achieve completely consistent behavior with the 

diffusion limit, it is necessary to obtain an accurate diffusion discretization for the first-

order scalar flux as well.  This higher level of accuracy, as indicated by higher order

preservation of the diffusion limit, has generally been neglected in developing Sn spatial 

discretization schemes, but we show here that retaining full first-order consistency can be 

important for angular discretizations.  In particular, we perform the asymptotic analysis

for a variety of angular discretizations in 1D spherical and 2D cylindrical geometry.  

Each discretization we analyze produces good results for the leading-order scalar flux, 

but only the weighted diamond difference discretization developed by Morel and Montry 

produces a good diffusion approximation for the first-order scalar flux in the asymptotic 

diffusion limit.  Computational testing indicates that preserving first-order consistency in 

the diffusion limit eliminates the flux dip in general, while preserving leading-order 

consistency in the diffusion limit only eliminates the flux dip in highly diffusive 

problems.  

It is interesting to note that, unlike the Galerkin-based analysis, the asymptotic 

analysis requires no assumptions about the angular shape of the solution.  One need only 
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assume a physical scaling of the transport equation that drives the transport solution to a 

diffusion limit as the scaling parameter approaches zero.

4. The Asymptotic Analysis for 1D spherical geometry

The one-dimensional spherical-geometry transport equation with isotropic 

scattering and an isotropic distributed source is given in conservation form1 by 

       2 2
2

1 1, 1 , , .
2 2

s
tr r r r Q

r r r
        


 

    
 

(9)

When any standard Sn angular discretization is applied to Eq.(9), the result is

 
   

 

 

1 1 1 1
2 22 2 2 2

2 2

,
2 2

m m m m
m m t m

m

s

r r
r r r r r

r w
r rr Q

   
   

 

   


 


 

(10)

where the coefficients are obtained through a recursion relationship

1 1
2 2

1 1
2 2

1

2 ,

0 ,

and

2 .

m mm m

M

M

m
m

w

w

  

 

 





 

 



(11)

While is set to zero to start the recursion, will always be zero when computed 

recursively.  The cell-edge cosines associated with Eq. (10) are also obtained via 

recursion

1 1
2 2

1 1
2 2

,

1 , 1 .

mm m

M

w 

 

 



 

   
(12)
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While is explicitly set to -1 to start the recursion, will always be equal to +1

when computed recursively. We define the scalar flux and current as

   
1

M

m m
m

r w r 


 (13)

and

   
1

,
M

m m m
m

J r w r 


 (14)

respectively. The discretization as defined is not complete.  To close the system, we must 

relate the cell-center and cell-edge fluxes.  To do this generally, we assume a weighted

diamond relationship between the cell-edge and cell-center cosines:

 1 1
2 2

1 ,m m mm m
    

 
   (15)

where each weighting factor, m , can take on any value between zero and one.  Note that 

m=1 gives the step scheme, and m=1/2 gives the diamond scheme.  Solving Eq. (15) for 

m+1/2, we get

1 1
2 2

(1 )1 .m
mm m

m m


  

  


  (16)

Equation (16) is a recursion that needs a starting flux, 1/2.  From Eq. (12), we find that 

the cosine corresponding to the starting value is  It is easily shown that the flux 

along this direction satisfies the following slab equation

     1 1
2 2

1 1 .
2 2t sr r r Q

r
    


   


(17)

The discretization is now complete, although the weighting factors are largely arbitrary.  

Finally we assume a standard Sn quadrature set that is symmetric about =0 and that 
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exactly integrates polynomials in  through degree 2 (quadratic).  Some useful 

properties of standard 1D quadrature sets are

1

2

1

3

1

0

2
3

0 .

M

m m
m
M

m m
m
M

m m
m

w

w

w

























(18)

To begin the asymptotic diffusion limit analysis, we substitute the scaled 

parameters in Eq. (2) into Eqs. (10) and (17), resulting in

 
   

 

 

1 1 1 12 22 2 2 2

2 2

2 2

m m m m t
m m m

m

t
a

r r
r r r r r

r w
r rr Q

    
  




  



   


 


    
 

(19)

and

     1 1
2 2

1 1 ,
2 2

t t
ar r r Q

r
 

    
 

         
(20)

where we note that s t a    .  We then substitute our flux guesses from Eq. (3) into

Eqs. (19) and (20), resulting in
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     

     

     

     

     

0 1 22 2

1 0 1 222
1 1 1

2 2 2

1 0 1 222
1 1 1

2 2 2

0 1 22 2

2 2
0 1 22

...

...

...

...

...
2 2

m m m m

m

m m m
m

m

m m m
m

t
m m m

t
a

r
r

r
w

r
w

r

r r Q

    


   


   


   




       




  



  

    

      

    

     

          

(21)

and

           

     

0 1 2 0 1 22 2
1 1 1 1 1 1

2 2 2 2 2 2

0 1 22

. . . . . .

1 1... .
2 2

t

t
a

r

Q


       




     


               
           

(22)

To proceed with the analysis we collect and equate the like order terms in Eqs. (21) and 

(22) to produce equations that describe the individual modes of the angular and scalar 

flux.  From the O(1/) terms we find that the leading order cell-centered angular fluxes 

are:

   0 01 .
2m  (23)

and
   0 0
1

2

1 ,
2

  (24)

for the spherical and starting direction equations, respectively.  We can substitute Eqs.

(23) and (24) into Eq. (16) and find that the cell-edge fluxes are also:

   0 0
1

2

1 .
2m

 


 (25)
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Equations (23), (24), and (25) imply that the leading-order angular flux is isotropic, 

which is in agreement with Eq. (4). 

After some manipulation, the O(1) terms in Eq. (21), result in

 
   

0
1 11 .

2 2m t m tr
    

 


(26)

In order to ensure a solvability condition, we take the zeroth angular moment of Eq. (26):

 
   

0
1 1

1 1 1

1 .
2 2

M M M

m m t m m t m
m m m

w w w
r


    
  


 

    (27)

Using the definitions found in Eqs. (11), (13), and (18), Eq. (27) can be simplified to 

   1 1 ,t t    (28)

which proves our solvability condition.  We then find the first-order current by taking the 

first angular moment of Eq. (26), resulting in:

   1 01 .
3 t

J
r





 


(29)

We now collect the O() terms in Eq. (21), resulting in

 
   

 

   

1 1
1 1 1 11 22 22 2 2 2

2 2 2
2 0 .

2 2 2

m m m m
m m t m

m

t a

r r r
r w

r r r Q

   
  

   

   


 


  

(30)

After applying the zeroth angular moment to Eq. (30), and performing some algebra Eq.

(30) becomes

   1 02 2 2 .ar J r r Q
r

 


 


(31)
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Substituting Eq. (29) into Eq. (31) results in the following one-dimensional diffusion 

equation in spherical coordinates, which is in agreement with Eq.(5):

   0 02 2 21 .
3 a

t

r r r Q
r r

  


 
  
 

(32)

Thus, the leading-order flux is described by the correct diffusion equation with any

choice of weighting factors in the approximation of the angular flux.  As a result, we will 

not see an error in the flux at the origin for the step, diamond, and Morel and Montry 

weighted diamond discretizations when the system is sufficiently thick and diffusive such 

that the leading-order solution dominates higher-order components.  

We now go a step further to determine the diffusion discretization for the first-

order flux generated by the various angular differencing schemes.  For the remainder of 

this analysis we will be explicit in describing the algebraic steps we use to arrive at our 

conclusions because the equation for the first-order flux is seldom derived for asymptotic 

analyses of the discretized transport equation.  Collecting the O() terms in Eq. (21), we 

obtain

 
   

     
2 2

2 21 1 1 12 3 3 12 22 2 2 2 .
2 2

m m m m
m m t m t a

m

r rr r r
r w

   
      

   


   


(33)

We then take the zeroth moment of this equation.  After some algebra, the equation 

simplifies to:

   2 12 2 0 .ar J r
r

 


 


(34)
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If we can find a Fick’s law relationship for J(2) in terms of (1), then we will obtain the 

correct diffusion discretization for the first-order flux.  First, we use Eq. (26) to solve for 

the first-order angular flux,  1
m :

   
 0

1 11 .
2 2

m
m

t r
 

 



 


(35)

We then substitute this relationship into Eq. (30):

 
 

 
 

 
 

     

0
12

0 01 11 12 2
1 1

2 2

2 2 2
2 2 02

1
2 2

1 1
2 2 2 2

.
2 2 2

m
m
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In order to solve for J(2), we take the first angular moment of Eq. (36):
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(37)

The requirements of our quadrature set in Eq. (18) and the definition of coefficients in 

Eq. (11)cause Eq. (37) to simplify to
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The first term in Eq. (38) can be expanded using the chain rule for differentiation, 

causing the equation to simplify to

 
 
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Solving for the current results in
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           (40)

If the second term on the right hand side of Eq. (40) is zero, then J(2) satisfies Fick’s law, 

and, consequently, the first-order flux will satisfy the correct diffusion equation.  Eqs. 

(34) and (40) fully define our diffusion equation for the first-order flux and are in 

agreement with Eq. (6) if the second term in Eq. (40) is zero.

In order for Fick’s law in Eq. (40) to be correct, the following equation must be 

satisfied

1 1 1 1
2 2 2 21

0 .
M

m m m m m
m

    
   



     (41)

This summation is the same expression that Morel and Montry called and forced to 

zero in order to preserve the Galerkin diffusion approximation.  Using the asymptotic 

approach to the diffusion limit, we have shown that the leading-order flux is accurate for 

all angular discretizations. However, Eq. (41) is not satisfied by the step and diamond 

discretizations, resulting in a first-order error in the diffusion limit.   The error in the 

diffusion limit for the step and diamond discretizations is introduced in the expression for 

the second-order current given by Eq. (40), which couples the leading-order flux to the 
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first-order flux.  The Galerkin approach is unable to uncover the source of the error with 

the same amount of detail as the asymptotic approach.

Morel and Montry have shown that Eq. (41) is satisfied assuming the following 

weighted diamond weighting factors

                                        
1

2

1 1
2 2

.
m m

m
m m

 


 


 





(42)

It is easy to show that these weighting factors are uniquely defined by the weighted

diamond relationship between the cell-center and cell-edge cosines

                                 1 1
2 2

1 .m m mm m
    

 
   (43)

Equation (43) implies that Eq. (15) will exactly relate the cell-edge and cell-center fluxes 

when the angular flux assumes the linear form defined by Eq. (1).

To provide an example, we first look at the S2 case, where there are two 

quadrature directions, a starting direction, an ending direction, and one interpolated 

direction as shown in Fig. 1.  We next expand the summation given in Eq. (41).

2

1 1 1 1
2 2 2 21

1 3 3 1 1 2 5 5 3 3
2 22 2 2 2 2 2

m m m m m
m

    

         

   


   

            


(44)

In order for this summation to be zero, 

 3 3 1 2
2 2

0 .     (45)

As a result, in order for the first-order flux to satisfy a diffusion equation,
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3
2

0 .  (46)

This interpolated value of  causes the  values in Eq. (42) to equal

1 1

2 2

1
.

 
 
 


(47)

A simple average relationship, where all  values equal ½, would force the quadrature set 

to be the midpoint rule, 1 2
1 1,2 2    .  However, the midpoint rule is not a good 

choice of quadrature sets in general.  If we want to use a general quadrature set and 

preserve the ability of the angular discretization to satisfy the correct diffusion equation 

with the first-order flux, we must use the Morel and Montry weighted diamond weighting 

factors for the angular flux given in Eq. (42).

We note a few more properties of the step and diamond discretizations.  First, as 

the number of quadrature points is increased with these methods, their respective 

solutions approach the correct diffusive behavior through first order.  This occurs because 

the sum in Eq. (41) approaches zero as the number of quadrature points becomes large.  

In TABLE I we have calculated the value of this sum for the Morel and Montry weighted

diamond differencing scheme (MM WDD), the step differencing scheme (SD), and the 

diamond differencing scheme (DD) for different orders of the Gauss-Legendre quadrature 

set.  As expected, the Morel and Montry weighted diamond scheme yields a sum that is 

zero to round-off, while the step and diamond difference schemes yield a sum that 

approaches zero as the quadrature order is increased.  
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5.  The Asymptotic Analysis for RZ geometry

The RZ transport equation with isotropic scattering and an isotropic distributed 

source is written in conservation form1 as

         

 

1, , , , , , , , , , , , ,
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(48)

The coordinate system corresponding to this equation is shown in Fig. 2, where 

c o s , s i n c o s s i n c o s           in Eq. (48). We now apply a Sn angular 

discretization to Eq. (48), resulting in
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where
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and 
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(51)

The index n is the -level index, Mn is the number of directions on each -level, and N is 

the number of -levels.  All of the directions on a given -level have the same -cosine.
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The starting directions, weighted directions, and -levels for an octant of a S6 triangular 

quadrature set are illustrated in Fig. 3. The cell-edge cosines associated with Eq. (49) are 

obtained as in the spherical geometry case except that there is a separate recursion and 

starting cosine for each -level

1 1 ,, ,2 2

2 2
1 1, ,2 2

,

1 , 1 ,

m nm n m n

n nn M n

w 
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 



 

     



(52)

where the weights in Eq. (52) are normalized on each level to sum to 22 1 n .   While 

 1 ,2 n
 is explicitly set to 21 n  to start the recursion,  1 ,2M n




will always be equal to 

21 n  when computed recursively. To complete this angular discretization, we

assume a general weighted diamond relationship between the cell-edge and cell-center 

cosines on each -level:

 , , 1 , 1, ,2 2
1 ,m n m n m nm n m n
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 

   (53)

where the weighting factors can take on any value between zero and one.  As in the 

spherical geometry case, m,n=1 gives the step scheme and m,n=1/2 gives the diamond 

scheme.  Solving Eq. (53) for m+1/2,n, we get

,
1 , 1, ,2 2, ,

(1 )1 .m n
m nm n m n

m n m n


  

  


  (54)

Equation (54) is a recursion that needs a starting flux on each -level, 1/2,n.  Following 

Eq. (52), we find that the cosine corresponding to the starting value on level n is 

2
1 ,2

1 nn
     It is easily shown that the flux along this direction satisfies the 

following Cartesian equation
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Finally, we assume a standard Sn quadrature set that possesses -levels, symmetry about 

the  and  planes, and integrates all polynomials in the direction cosines through 

second (quadratic) order.  

We begin the asymptotic analysis by applying the appropriate scaling to Eqs. (49)

and (55).  The RZ transport equation becomes

 
   

     

1 1 1 1, , , ,, 2 2 2 2
,

,

, , ,

, ,
,

1 1, , , ,
4 4

m n m n m n m nm n
m n

m n

t t
m n m n m n a

r z r z
r r z

r r rw

r z r z r z Q
z

   


 
     

   

   


 


        

(56)

and the starting-direction equation becomes
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We then substitute our flux guesses from Eq. (3) into Eqs. (56) and (57).  This results in
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and
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(59)

As in the spherical geometry case, we collect and equate like order terms in Eqs. (58) and 

(59) to produce relationships that describe the individual modes of the angular and scalar 

flux.  Using the same logic as in the spherical geometry case the O(1/) terms imply that 

the leading-order angular flux is isotropic, 

   0 01 ,
4

 
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 (60)

which is in agreement with Eq. (4).

After some algebra, the O(1) relationship generated by Eq. (58) is
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As in the 1D spherical case, taking the zeroth moment of Eq. (61) will demonstrate that 

the solvability condition is satisfied. We then use Eq. (61) to find the first-order current 

by taking the first angular moment of the equation and applying standard quadrature 

properties and the definitions given in Eq. (51).  The first-order current is
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which is the expected Fick’s law relationship between first-order current and leading-

order flux.  

We now collect the O() terms in Eq. (58), resulting in 
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We take the zeroth moment of this relationship, and perform some algebra.  This process 

results in an equation involving the first-order current and zeroth-order scalar flux:

   1 01 .ar J Q
r

   
 
� (65)

Substituting our Fick’s law relationship into Eq. (65), we obtain
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Equation (66) is in agreement with Eq. (5) and shows that the correct diffusion equation 

is satisfied by the leading-order flux.  As in spherical geometry, this result is true for any 

choice of weighting factors in the approximation of the angular flux.  

We will now determine what weighted diamond weighting factors will cause the 

angular discretization to satisfy the correct first-order flux diffusion equation.  To do this, 

we will follow essentially the same procedure as in the 1D spherical case.  This procedure 

involves six steps.
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1. Collect the O() terms in Eq. (58).

2. Take the zeroth angular moment of the resultant equation in step 1.  This 

zeroth moment produces a relationship between the second-order current and 

the first-order scalar flux.

3. From Eq. (61) solve for the first-order angular flux (  1
,m n ), and substitute this 

relationship into Eq. (64), the O() equation.

4. Take the first angular moment of the equation generated in step 3.

5. Simplify the first angular moment equation using standard quadrature 

properties, the definitions of the -coefficients, and algebra.

6. Use the equation generated in step 5 to solve for the second-order current, 

 2J


, in terms of the first-order scalar flux.  Note that if the second-order 

current satisfies Fick’s Law in terms of the first-order scalar flux, then we will 

have shown that the first-order flux is described by the diffusion equation.  

This diffusion equation is determined from the results of step 2 and step 6.

In step 2, the zeroth angular moment of the O() equation is 

   2 11 0 .arJ
r
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 
� (67)

The relationship for the second-order current in step 6 is
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Equations (67) and (68) are analogous to Eqs. (34) and (40) from the spherical geometry 

analysis.  The Appendix contains a more detailed description of the six steps to generate 

these relationships for RZ geometry.

In order for the second-order current and first-order flux to be related by Fick’s 

Law, the following terms of Eq. (68) must be satisfied:
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It is easy to show that the second relationship in Eq. (69) is zero because
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The first relationship in Eq. (69) is more difficult to simplify.  First we expand it as 

follows



26

  
 
 

, , 1 1 1 1, , , ,2 2 2 21 1

, 1 1 1 1, , , ,2 2 2 21 1

, 1 1 1 1, , , ,2 2 2 21 1
,

n

n

n

MN

m n m n m n m n m n m n
n m

MN

m n m n m n m n m n
n m

MN

m n m n m n m n m n
n m

     

    

    

   
 

   
 

   
 

  

 









(71)

and then note that the second term in Eq. (71) is zero because the quadrature set contains 

symmetric levels.  This means that for every ,m n level that contains a series of ,m n , 

1 ,2m n



, and 1 ,2m n
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values there is another -level with the same series of  ,m n , 1 ,2m n
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and the second-order current becomes
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If the second term on the right hand side of Eq. (73) is zero, we will have a correct Fick’s 

Law relationship for the second-order current.  The sum in Eq. (73) is completely 

analogous to Eq. (41) from the spherical geometry case.  For this reason, we can draw the 

same conclusion as in the spherical geometry case.  This term will be zero if we use the 

Morel and Montry weighting factors in Eq. (53) analogous to those defined by Eq. (42): 
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Thus, if we use the weighting factors given in Eq. (74), we will achieve first order 

consistency in the diffusion limit, and the combination of Eqs. (67) and (73) are in 

agreement with Eq. (6).

The sum in Eq. (71) will approach zero in the step and diamond differencing 

cases as the number of quadrature points becomes large.  This result means that the step 

and diamond differencing solutions actually do approach the correct diffusion limit 

through first order as the angular approximation becomes infinitely refined.  In TABLE II

we have calculated the value of this sum for the Morel and Montry weighted diamond 

differencing case and the diamond differencing case for different orders of the Level 

Symmetric quadrature set.  As expected, the Morel and Montry weighted diamond 

scheme yields a sum that is zero to round-off, while the diamond difference scheme 

yields a sum that approaches zero as the quadrature order is increased.

The results of the asymptotic analysis through first order are fundamentally the 

same for the spherical and cylindrical geometry cases.  In both cases, a contamination 

term appears in the expression for the second-order current (Eq. (40) for spherical 

geometry and Eq. (73) for cylindrical geometry).  In particular, the second-order current 

can be described as follows
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where the contamination term is multiplied by the  factor.  This is the same factor that 

Morel and Montry forced to be zero to preserve the Galerkin diffusion approximation.    

Forcing this  factor to be zero determines the Morel and Montry weighting factors for 

the weighted diamond difference discretization.  Furthermore, the contamination term 

only affects the accuracy of the first-order flux diffusion discretization.  As a result, all 

three angular discretizations are accurate when a problem is sufficiently thick and 

diffusive such that the leading-order solution dominates.  

Often, the error due to the contamination term in the first-order equation presents 

itself as a flux dip in problems not sufficiently thick and diffusive. The flux dip means 

that the flux solution has an unphysical positive slope at the origin of the sphere or 

cylinder.  However, as first shown by Morel and Montry, this error can also manifest 

itself as an unphysical negative slope at the origin of the sphere or cylinder.  This 

negative slope solution does not produce a flux dip but rather a different form of 

anomalous flux shape . A preliminary investigation indicates that our asymptotic 

analysis can be extended to predict the slope of the flux due to the error in the solution 

caused by the term.  However computational testing of this extension is extremely 

problematic because the theory only rigorously applies when the solution is completely 

dominated by the asymptotic solution to first order.  Such domination only occurs when 

the solution is highly diffusive and the flux dip is essentially negligible.  Furthermore, 

preliminary computational results indicate that contributions from the higher-order 

asymptotic terms, which rapidly decay when the Morel and Montry weighted diamond 

scheme is used, persist to much smaller values of when the step and diamond schemes 
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are used. This greatly exacerbates the difficulty of computational testing and indicates the 

presence of large higher order contamination terms for the step and diamond schemes.  

Thus we conjecture that a practical prediction of the slope of the flux at the origin will 

require a higher-order analysis.  Such an analysis is beyond the scope of this paper, and 

will not be further discussed.

The Galerkin diffusion analysis of Montry and Morel was unable to pinpoint the 

cause of the error associated with the step and diamond schemes to the level of detail that 

the asymptotic analysis reveals.  The purpose of the Galerkin analysis was to determine 

the correct angular discretization that would eliminate the flux dip when the diffusion 

approximation was valid.  This was done with the expectation that it would also eliminate 

the flux dip in general.  It was computationally determined that preservation of the 

Galerkin diffusion approximation did in fact eliminate the flux dip in general.  The Morel 

and Montry weighted diamond method that was derived is the only method in the family 

of general weighted diamond methods (which includes the step and diamond schemes) 

that forces the  factor to be zero for any standard quadrature set.  However, the Galerkin 

approach was unable to show that all methods are accurate in extremely diffusive 

problems.  The asymptotic approach reveals this property of the methods because it 

represents a true analysis of the diffusion limit and the approach to the diffusion limit.  
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6.  Numerical Test Problems

We have run a variety of test problems to demonstrate the inaccuracy created by 

the methods which do not produce accurate asymptotic behavior through first order.  We 

demonstrate this inaccuracy by showing anomalous and unphysical slopes in the scalar 

flux at the origin of the sphere or cylinder.  This unphysical behavior of the step and 

diamond differencing methods is caused by their inconsistency to the analytic transport 

equation through first order.  We ran these test problems using Capsaicin5, a transport 

software project being developed at Los Alamos National Laboratory.  All of these 

problems share the following properties.

t 

Radius = 1.0
Height of Cylinder = 1.0 (for RZ only)

0.1
0.05

1.0
a

Q










The boundary conditions are reflecting at the origin of the radial coordinates and vacuum 

elsewhere.  Capsaicin uses a linear discontinuous finite element spatial discretization for 

1D spherical geometry and a bi-linear discontinuous finite element spatial discretization 

applied to a uniform rectangular grid in RZ geometry.  We ensured that all numerical 

solutions presented are spatially converged.

For each problem, we choose a scaling factor, , that scales the above data in the 

same manner of the diffusion scaling:  , ,t
t a a Q Q

    


   .   As  becomes 

small, the problem becomes diffusive.  In each of our plots, we plot the scalar flux 
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divided by the scalar flux at the origin.  This normalization of the flux will better show 

the slope of the scalar flux at the origin.  The flux at the origin should be the maximum 

value of the curve, so if the curve for a particular -value becomes greater than one, the 

solution exhibits a flux dip, or positive slope at the origin.  The flux can be maximum at 

the origin and still be incorrect.  This unphysicality, or error, in the flux will be 

manifested as a negative slope in the flux at the origin, and we correlate this 

unphysicality to a lack of consistency with the diffusion limit through first order.

In Fig. 4 and Fig. 5 we show results for an problem using a S2 quadrature set 

in spherical geometry.  The flux dip, or positive slope of the flux at the origin, is evident 

for the diamond differencing case in Fig. 4.  Furthermore, we see that the slope of the 

flux at the origin is zero for the Morel and Montry weighted diamond differencing, as 

predicted by the analysis.  In Fig. 5, we observe a negative slope at the origin for the 

scalar flux in the step differencing case, which Morel and Montry predicted because  is 

positive for the S2 step case as shown in TABLE I.  The result from this particular test 

problem appears to be an anomalous linear solution for step differencing.  We have 

verified that this linear shape is in fact the correct solution for the S2 test problem 

with step differencing. Because  is not small for this problem, it is not diffusive.  As a 

result, the leading-order scalar flux does not completely dominate the solution and we see 

the result of the error in the first-order flux for the both the step and diamond differencing 

cases.
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In Fig. 6 and Fig. 7, we have plotted the step and diamond difference schemes 

respectively for our test problem in spherical geometry as    for the multiple values 

of .  Fig. 6 shows that the negative slope at the origin becomes less severe as    , and 

that the step differencing solution actually begins to have some curvature.  However, this 

plot indicates that even for small values of , we will still see an error in the flux.   Fig. 7

shows that when    , the flux dip disappears for the angular diamond differencing, 

which is what we expect because the leading-order solution begins to dominate in the 

diffusion limit.  In Fig. 8, we have plotted the same set of  curves, but for the Morel and 

Montry weighted diamond angular discretization.  For this discretization, every flux has a 

zero slope at the origin, which confirms the results of the asymptotic analysis.  From this

series of figures we conclude that the Morel and Montry weighted diamond angular 

discretization is extremely accurate for all values of diamond differencing becomes 

accurate as the problems becomes more diffusive, and the step differencing requires an 

extremely diffusive problem to be accurate.  It is interesting to note that step differencing 

is extremely inaccurate for these problems even compared with diamond differencing.

We ran similar test problems for the RZ geometry case. Fig. 9 demonstrates that 

the Morel and Montry weighted diamond angular discretization exhibits no unphysical 

behavior in the flux at the origin for all values of  in RZ geometry.  In Fig. 10 we note 

the flux dip, or positive slope in the flux, near the origin for the diamond angular 

differencing.  This plot shows that as    , the problem becomes more diffusive, the 

flux dip disappears, just as in spherical geometry, further confirming the results of the 

asymptotic analysis.  
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In Fig. 11 and Fig. 12, we have plotted the =1 case for a variety of quadrature 

orders for the diamond differencing angular discretization in 1D spherical and RZ 

geometries respectively.  In each figure, the flux dip appears for each quadrature order, 

but diminishes as the quadrature order increases.  We note that in TABLE I and TABLE 

II the  sums are approaching zero as the quadrature order approaches infinity.

7.  Comparison of the Galerkin and Asymptotic Analyses

The primary conclusion from the Galerkin analysis for the general family of 

weighted diamond discretization schemes was that there was only one particular 

weighted diamond scheme that yielded a zero value for the  factor and thereby 

preserved the Galerkin diffusion approximation.  This ensured that there would be no flux 

dip when the Galerkin approximation was valid, and suggested that the flux dip might be 

eliminated for all problems.  The general elimination of the flux dip was computationally 

confirmed.  A problem with this analysis is that it gives no information as to the 

conditions under which the Galerkin approximation will be valid.  Furthermore, when the 

Galerkin approximation is not preserved by a scheme, the Galerkin analysis only yields 

information on the behavior of the Sn solution under the assumption that the angular flux 

has a linear angular dependence.  Such dependence is only guaranteed for S2 quadrature 

in 1D spherical geometry with step differencing, thereby severely limiting the predictive 

capability of the Galerkin analysis when the Galerkin diffusion approximation is not 

preserved.
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The asymptotic approach to the diffusion limit analysis yields much more 

information because it makes no assumptions about the dependence of the angular flux.  

Rather it assumes a certain physical scaling of the Sn equations that leads to the validity 

of the diffusion approximation in the limit as the scaling parameter approaches zero.  

This analysis reveals that for any weighted diamond angular differencing scheme, the 

leading-order scalar flux will satisfy the correct diffusion equation.  As a result, when a 

problem is truly diffusive, and thus dominated by the leading-order solution, any 

relationship between the angular fluxes with the correct starting direction equation will 

produce accurate solutions.  The Galerkin approach to this analysis was unable to predict 

this very important behavior, which we have demonstrated in numerous test problems. 

Furthermore, the asymptotic approach reveals that the  factor appears as a 

contamination term in the expression for the second-order current.  This second-order 

current affects the first-order scalar flux, which prevents the first-order scalar flux from 

being described by the correct diffusion equation.  As a result, if the problem is 

approaching the diffusion limit, but not completely dominated by the leading-order 

solution, we will see the effect of this contamination term in the form of a non-zero slope 

in the scalar flux at the origin of the problem.  When the slope of the flux is positive, we 

will observe a flux dip in the solution; and when it is negative, we will observe a different 

form of anomalous flux shape

Our asymptotic analysis reveals that the Morel and Montry weighted diamond 

difference discretization is the only angular discretization in this family of methods that is 
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correct through first order in the asymptotic diffusion limit.  We have shown that the step 

and diamond difference discretizations have a contamination term, which arises through a 

non-zero value of , in the equation for the first-order scalar flux.  

8.  Conclusion

Using an asymptotic analysis, we have shown that the weighted diamond angular 

differencing scheme of Morel and Montry preserves the diffusion limit through first-

order. This is not particularly surprising given that this scheme also preserves the 

Galerkin approximation.  However, our asymptotic analysis also shows that any general 

weighted diamond scheme, including the step and diamond schemes, preserves the 

diffusion limit to leading-order, and therefore yields accurate results in problems 

sufficiently diffusive to be dominated by the leading-order solution.  This is a significant 

result that cannot be obtained from a Galerkin analysis.  While it might appear that the 

asymptotic and Galerkin analyses are in conflict, we believe that this is not the case.  

Rather we conjecture that preservation of the Galerkin approximation is equivalent to 

preservation of the asymptotic diffusion limit through first order.  The reasoning behind 

this conjecture is straightforward.  Preservation of the Galerkin approximation requires 

that a scheme be able to accurately represent an angular flux solution with a linear 

dependence in the direction cosines.  The asymptotic diffusion-limit analysis shows that 

the first-order component of the angular flux is indeed linear in the direction cosines, but 

the leading-order component is isotropic.  Thus, it is not surprising that a scheme which 

accurately represents an isotropic solution but not a linear solution can be accurate in the 
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diffusion limit to leading order while having a first-order error term.   The Galerkin 

analysis cannot address the leading-order behavior, but it does address the overall first-

order behavior in a limited sense.

Appendix

We first collect all the O() terms in Eq. (58), and take the zeroth angular 

moment of the equation.
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In analogy with the spherical case, Eq. (A.1) simplifies to
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Also, as in the spherical case, if we can find a Fick’s law relationship for  2J
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in terms of 

 1 , then we will have shown that the first-order flux satisfies a diffusion equation for 

our Sn angular discretization in RZ geometry.  In order to develop this relationship, we 

use Eq. (61) to solve for  1
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We then substitute this relationship into the O() equation, Eq. (64), resulting in
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In order to solve for  2J


, we take the first angular moment of Eq. (A.5).
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Using standard quadrature relationships and the definition of the current in Eq. (51), we 

find that Eq. (A.6) simplifies to
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We further simplify Eq. (A.7) by using the chain rule of differentiation on the first term 

and the definition of the -coefficients given in Eq. (50) to obtain
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We again use standard quadrature relationships to simplify Eq. (A.8) to
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If we solve for the second-order current in Eq. (A.9), the result is Eq. (68).
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TABLE I
Sums in Eq. (41) for the various angular discretizations in spherical geometry.

Quadrature set order Sum for MM WDD Sum for SD Sum for DD
2 0 7.698004e-01 2.06E-01
4 0.00E+00 4.037247e-01 -3.57E-03
8 -8.33E-17 2.164258e-01 -4.57E-05
10 -4.16E-17 1.755520e-01 -1.21E-05
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TABLE II
The sums in Eq. (71) for the angular discretizations in RZ for a Level Symmetric 

quadrature set.

Quadrature set order Sum for MM WDD Sum for DD
2 -4.12E-16 1.42E+00
4 -1.41E-16 1.15E-01
8 1.41E-17 2.09E-02
12 3.39E-16 1.12E-02
16 -1.55E-15 8.82E-03
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Figure Captions

Fig. 1.  Diagram of the S2 quadrature set in 1D.

Fig. 2. Coordinate system for R-Z geometry.

Fig. 3. Starting directions, weighted directions, and -levels for a triangular S6 quadrature 

set.  Starting directions are denoted by “SD”.

Fig. 4.  Flux dip for Diamond Differencing in spherical geometry for the S2, =1 case.

Fig. 5:  Negative flux slope at the origin for Step Differencing in spherical geometry for 

the S2, =1 case.

Fig. 6.    The negative slope at the origin begins to disappear as    for step 

differencing, S2, spherical geometry.

Fig. 7.  The flux dip disappears as    for diamond differencing, S2, spherical 

geometry.

Fig. 8.  No flux dip appears for the Morel and Montry weighted diamond angular 

differencing, S2, spherical geometry.

Fig. 9.  The Morel and Montry weighted diamond angular differencing solution for an S2

Level Symmetric quadrature set in RZ geometry.  Note the lack of a flux dip near the 

origin for this discretization.

Fig. 10. The flux dip disappears as    for diamond difference in angle S8, Level 

Symmetric, RZ geometry.

Fig. 11.  Flux dip behavior for the diamond difference discretization in 1D spherical 

geometry as the quadrature set is refined.  This is the =1 case.

Fig. 12.  Flux dip behavior for the diamond difference discretization in RZ as the 

quadrature set is refined.  This is the =1 case with the level symmetric quadrature set.
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Fig. 1.  Diagram of the S2 quadrature set in 1D.
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Fig. 2. Coordinate system for R-Z geometry.
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Fig. 3. Starting directions, weighted directions, and -levels for a triangular S6 quadrature 
set. Starting directions are denoted by “SD”.
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Fig. 4. Flux dip for Diamond Differencing in spherical geometry for the S2, =1 case.
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Fig. 5:  Negative flux slope at the origin for Step Differencing in spherical geometry for 
the S2, =1 case.
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Fig. 6.    The negative slope at the origin begins to disappear as    for step 
differencing, S2, spherical geometry.
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Fig. 7.  The flux dip disappears as    for diamond differencing, S2, spherical 
geometry.



51

Fig. 8.  No flux dip appears for the Morel and Montry weighted diamond angular 
differencing, S2, spherical geometry.
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Fig. 9.  The Morel and Montry weighted diamond angular differencing solution for an S2
Level Symmetric quadrature set in RZ geometry.  Note the lack of a flux dip near the 

origin for this discretization.
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Fig. 10. The flux dip disappears as    for diamond difference in angle S8, Level 
Symmetric, RZ geometry.
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Fig. 11.  Flux dip behavior for the diamond difference discretization in 1D spherical 
geometry as the quadrature set is refined.  This is the =1 case.
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Fig. 12.  Flux dip behavior for the diamond difference discretization in RZ as the
quadrature set is refined.  This is the =1 case with the level symmetric quadrature set.


